Электроника Физика Электротехника Полупроводниковые материалы Теория конструктивных материалов Курс черчения Контольная работа

Конспект курса лекций по физике. Электромагнитные волны

Тонкие линзы. Изображение предметов с помощью линз

Вообще геометрической оптикой называется раздел оптики, в котором законы распространения света рассматриваются на основе представления о световых лучах. Под световыми лучами понимают нормальные к волновым поверхностям линии, вдоль которых распространяется поток световой энергии. Геометрическая оптика, оставаясь приближенным методом построения изображений в оптических системах, позволяет разобрать основные явления, связанные с прохождением через них света, и является поэтому основой теории оптических приборов – призм и линз.

Ход лучей в «толстых» призмах и линзах можно рассматривать на основе уравнения 31.8, если не учитывать явление дисперсии – зависимость величины показателя преломления от длины волны.

Для «тонкой» призмы (рис.31.6) можно определить угол отклонения из упрощенного соотношения, в котором значения sin заменены значениями углов:

 (31.9)

Линзы представляют собой прозрачные тела, ограниченные двумя поверхностями (одна из них обычно сферическая, иногда цилиндрическая, а вторая - сферическая или плоская), преломляющими световые лучи, способные формировать оптические изображения предметов. Материалом для линз служат стекло, кварц, кристаллы, пластмассы и т. п. По внешней форме (рис.31.7) линзы делятся на: 1) двояковыпуклые; 2) плосковыпуклыс; 3) двояковогнутые; 4) плосковогнутые; 5) выпукло-вогнутые; 6) вогнуто-выпуклые. По оптическим свойствам линзы делятся на собирающие и рассеивающие.

Рис. 31.7. Типы оптических линз.

Линза называется тонкой, если ее толщина (расстояние между ограничивающими поверхностями) значительно меньше по сравнению с радиусами поверхностей, ограничивающих линзу. Прямая, проходящая через центры кривизны поверхностей линзы называется главной оптической осью. Для всякой линзы существует точка, называемая оптическим центром линзы, лежащая на главной оптической оси и обладающая тем свойством, что лучи проходят сквозь нее не преломляясь. Оптический центр О линзы для простоты будем считать совпадающим с геометрическим центром средней части линзы (это справедливо только для двояковыпуклой и двояковогнутой линз с одинаковыми радиусами кривизны обеих поверхностей; для плосковыпуклых и плосковогнутых линз оптический центр О лежит на пересечении главной оптической оси со сферической поверхностью).

Для вывода формулы тонкой линзы - соотношения, связывающего радиусы кривизны R1 и R2 поверхностей линзы с расстояниями а и b от линзы до предмета и его изображения (рис.31.8), воспользуемся принципом Ферма, или принципом наименьшего времени: действительный путь распространения света (траектория светового луча) есть путь, для прохождения которого свету требуется минимальное время по сравнению с любым другим мыслимым путем между теми же точками.

Рис.31.8. Тонкая линза и построение изображения в ней.

Универсальная формула линзы представлена уравнением 31.10

 (31.10)

Здесь полагают отрицательными радиусы вогнутых (по ходу луча) поверхностей и расстояния до мнимых точек.

D - оптическая сила линзы (измеряется в диоптриях – дптр - диоптрия - оптическая сила линзы с фокусным расстоянием 1 м: 1 дптр = 1/м), точки F по обе стороны линзы – фокусное расстояние линзы – точка, в которой собираются пучки лучей, распространяющиеся параллельно главной оптической оси линзы, a и b – расстояния от главной плоскости линзы до предмета и его изображения соответственно. 

Линзы с положительной оптической силой являются собирающими, с отрицательной — рассеивающими. Плоскости, проходящие через фокусы линзы перпендикулярно ее главной оптической оси, называются фокальными плоскостями. В отличие от собирающей рассеивающая линза имеет мнимые фокусы. В мнимом фокусе сходятся (после преломления) воображаемые продолжения лучей, падающих на рассеивающую линзу параллельно главной оптической оси (рис. 31.9).

Формулу линзы (31.10) можно записать в виде, известном из курса средней школы:

Для рассеивающей линзы расстояния F и b надо считать отрицательными.

Построение изображения предмета в линзах осуществляется с помощью следующих лучей:

1) луча, проходящего через оптический центр линзы и не изменяющего своего направления;

2) луча, идущего параллельно главной оптической оси; после преломления в линзе этот луч (или его продолжение) проходит через второй фокус линзы;

3) луча (или его продолжения), проходящего через первый фокус линзы; после преломления в ней он выходит из линзы параллельно ее главной оптической оси.


Для примера приведены построения изображений в собирающей (рис. 31.9,а,б) и в рассеивающей (рис. 31.9,в) линзах: действительное (рис. 31.9, а) и мнимое (рис. 31.9, 6) изображения - в собирающей линзе, мнимое - в рассеивающей.

  Рис. 31.9. Примеры построения изображений в собирающих (а,б) и рассеивающей (в) линзах, находящихся в менее плотной, по сравнению с показателем преломления тела линзы, средах.

Отношение линейных размеров изображения и предмета называется линейным увеличением линзы.

Комбинации собирающих и рассеивающих линз применяются в оптических приборах, используемых для решения различных научных и технических задач. Оптическая сила таких оптических систем определяется в виде суммы оптических сил линз, составляющих систему:

Dсист = D1+D2+D3+… (31.11)

В заключение заметим, что при построении изображений поворот луча начинается на главной плоскости линзы. Поэтому при изображении линз их «тело» удаляют и изображают (рис.31.10) в виде

Дальнейшая классификация может идти по числу степеней свободы или по порядку степени дифференциального уравнения, описывающего систему. Известно, что формально число степеней свободы колебательной системы равно половине порядка ее дифференциального уравнения. Поэтому дискретные системы можно классифицировать на системы с нулевой, полу целой, одной и т.д. степенями свободы (из механики известно, что количество степеней свободы - это количество независимых переменных необходимых для полного описания движения системы). Кроме того, колебательные системы могут быть консервативными и неконсервативными; автономными и неавтономными и т.д.

На главный сайта: Курс физики