Электроника Физика Электротехника Полупроводниковые материалы Теория конструктивных материалов Курс черчения Контольная работа

Конспект курса лекций по физике. Оптика

ПОЛЯРИЗАЦИЯ СВЕТА

Естественный и поляризованный свет

Следствием теории Максвелла является поперечность световых воли: векторы напряженностей электрического Е и магнитного Н полей волны взаимно перпендикулярны и колеблются перпендикулярно вектору скорости v распространения волны (перпендикулярно лучу). Поэтому для описания закономерностей поляризации света достаточно знать поведение лишь одного из векторов. Обычно все рассуждения ведутся относительно светового вектора - вектора напряженности Е электрического поля (это название обусловлено тем, что при действии света на вещество основное значение имеет электрическая составляющая поля волны, действующая на электроны в атомах вещества).

Свет представляет собой суммарное электромагнитное излучение множества атомов. Атомы же излучают световые волны независимо друг от друга, поэтому световая волна, излучаемая телом в целом, характеризуется всевозможными равновероятными колебаниями светового вектора (рис.31.12,а; луч перпендикулярен плоскости рисунка). В данном случае равномерное распределение векторов Е объясняется большим числом атомарных излучателей, а равенство амплитудных значений векторов Е - одинаковой (в среднем) интенсивностью излучения каждого из атомов. Свет со всевозможными равновероятными ориентациями вектора Е (и, следовательно, Н) называется естественным.

Рис.31.12. Естественный (а), частично поляризованный (б) и плоскополяризованный лучи.

Иначе те же лучи изображают с помощью стрелок и точек, причем стрелки обозначают колебания, происходящие в плоскости рисунка, а точки – в перпендикулярных им направлениях (рис.31.13).

Условное изображение естественного (а), частично поляризованного (б) и полностью поляризованного (в) лучей.

Свет, в котором направления колебаний светового вектора каким-то образом упорядочены, называется поляризованным. Так, если в результате каких-либо внешних воздействий появляется преимущественное (но не исключительное!) направление колебаний вектора Е (рис. 31.12, 31.13, б), то имеем дело с частично поляризованным светом. Свет, в котором вектор Е (и, следовательно, Н) колеблется только в одном направлении, перпендикулярном лучу (рис. 31.12, 31.13, в), называется плоскополяризованным (линейно поляризованным).

Для получения поляризованного света используют поляризаторы – специальные устройства, выделяющие плоскополяризованный луч из естественного. Простейшим по устройству и самым дешевым поляризатором является поляроид – специально изготовленная пленка, поверхности которой защищены стеклами. Изучение поляризованных потоков света производится с помощью анализаторов, в принципе устроенных аналогично поляризаторам и в некоторых случаях взаимозаменяемых.

Плоскость, проходящая через направление колебаний светового вектора плоскополяризованной волны и направление распространения этой волны, называется плоскостью поляризации. Плоскополяризованной свет является предельным случаем эллиптически поляризованного света - света, для которого вектор Е (вектор Н) изменяется со временем так, что его конец описывает эллипс, лежащий в плоскости, перпендикулярной лучу. Если эллипс поляризации вырождается в прямую (при разности фаз j, равной нулю или p), то имеем дело с рассмотренным выше плоскополяризованным светом, если в окружность (при j = ±p/2 и равенстве амплитуд складываемых волн), то имеем дело с циркулярно поляризованным (поляризованным по кругу) светом.

Поляризация света при отражении и преломлении не границе двух диэлектриков

Если естественный свет падает на границу раздела двух диэлектриков (например, воздуха и стекла), то часть его отражается, а часть преломляется и распространяется во второй среде. Устанавливая на пути отраженного и преломленного лучей анализатор (например, турмалин), убеждаемся в том, что отраженный и преломленный лучи частично поляризованы: при поворачивании анализатора вокруг лучей интенсивность света периодически усиливается и ослабевает (полного гашения не наблюдается!). Дальнейшие исследования показали, что в отраженном луче преобладают колебания, перпендикулярные плоскости падения (на рис. 31.14,а они обозначены точками), в преломленном - колебания, параллельные плоскости падения (изображены стрелками).


а) б)

Рис. 31.14. Поляризация света при отражении и преломлении на границе раздела диэлектриков.

Степень поляризации (степень выделения световых волн с определенной ориентацией электрического (и магнитного) вектора) зависит от угла падения лучей и показателя преломления. Шотландский физик Д. Брюстер (1781—1868) установил закон, согласно которому при угле падения iБ (угол Брюстера), определяемого соотношением

tgiБ = n21 (31.12)

(n21 - показатель преломления второй среды относительно первой), отраженный луч

является плоскополяризованным (содержит только колебания, перпендикулярные плоскости падения) (рис. 31.14,б). Преломленный же луч при угле падения iБ поляризуется максимально, но не полностью.

Следствие:

Если свет падает на границу раздела под углом Брюстера, то отраженный и преломленный лучи взаимно перпендикулярны ( (i2 - угол преломления), откуда cosiB = sini2). Следовательно, iB + i2 = p/2, но   (закон отражения), поэтому

Степень поляризации отраженного и преломленного света при различных углах падения можно рассчитать из уравнений Максвелла, если учесть граничные условия для электромагнитного поля на границе раздела двух изотропных диэлектриков (так называемые формулы Френеля).

Степень поляризации преломленного света может быть значительно повышена (многократным преломлением при условии падения света каждый раз на границу раздела под углом Брюстера). Если, например, для стекла (n = 1,53) степень поляризации преломленного луча составляет ~15%, то после преломления на 8 - 10 наложенных друг на друга стеклянных пластинок вышедший из такой системы свет будет практически полностью поляризованным. Такая совокупность пластинок называется стопой и, возможно впервые, была продемонстрирована Александром Григорьевичем Столетовым в 70-ых годах ХIX века. Стопа может служить для анализа поляризованного света как при его отражении, так и при его преломлении.

Процессы в электрических цепях с сосредоточенными элементами носят колебательный характер и описываются электрическими колебаниями напряжений и токов в различных частях цепи. Эти колебания описывают скалярными функциями времени (t) и обозначают: u(t) - мгновенное значение напряжения, i(t) - мгновенное значение некоторого электрического колебания вообще.

На главный сайта: Курс физики