Контрольная
Культура
Электротехника
Лабораторные
Школьный курс
Термех
Курсовая
Атомные станции

Лекции

Черчение
Физика
Реакторы
Интеграл
Выполнение чертежей
Конспект
На главную

Конспект курса лекций по физике. Оптика

Дифракция Фраунгофера на дифракционной решетке

Большое практическое значение имеет дифракция, наблюдаемая при прохождении света через одномерную дифракционную решетку — систему параллельных щелей равной ширины, лежащих в одной плоскости и разделенных равными по ширине непрозрачными промежутками. Рассматривая дифракцию Фраунгофера на щели, мы видели, что распределение интенсивности на экране определяется направлением дифрагированных лучей. Это означает, что перемещение щели параллельно самой себе влево или вправо не изменит дифракционной картины. Следовательно, если перейти от одной щели ко многим (к дифракционной решетке), то дифракционные картины, создаваемые каждой щелью в отдельности, будут одинаковыми.

Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех щелей, т. е. в дифракционной решетке осуществляется многолучевая интерференция когерентных дифрагированных пучков света, идущих от всех щелей.

Рассмотрим дифракционную решетку.

Рис.33.8. Дифракция света на одномерной плоской решетке.

 На рис.33.8 для наглядности показаны только две соседние щели MN и CD. Если ширина каждой щели равна а, а ширина непрозрачных участков между щелями b, то величина d = a+b называется постоянной (периодом) дифракционной решетки.

Пусть плоская монохроматическая волна падает нормально к плоскости решетки. Так как щели находятся друг от друга на одинаковых расстояниях, то разности хода лучей, идущих от двух соседних щелей, будут для данного направления j одинаковы в пределах всей дифракционной решетки:

 (33.16)

Результат интерференции этих лучей на экране зависит от разности фаз складывающихся колебаний. Если она составит  т.е. лучи придут в одной фазе, то они усилят друг друга, если разность хода составит  то лучи ослабят друг друга.

Таким образом, условие максимума для решетки следует записать в виде:

 (33.17)

Условие минимума при дифракции на плоской решетке имеет, следовательно, вид:

  (33.18) 

Чем больше щелей N, тем большее количество световой энергии пройдет через решетку, тем больше минимумов образуется между соседними главными максимумами, тем, следовательно, более интенсивными и более острыми будут максимумы. На рис.33.9 качественно представлена дифракционная картина от восьми щелей. Так как модуль sinj не может быть больше единицы, то из (33.17) следует, что число главных максимумов

т. е. определяется отношением периода решетки к длине волны.

 

Рис.33.9. Результат дифракции монохроматического света на решетке из 8 щелей.

Положение главных максимумов зависит от длины волны l (см. (33.17)). Поэтому при пропускании через решетку белого света все максимумы, кроме центрального (m=0), разложатся в спектр, фиолетовая область которого будет обращена к центру дифракционной картины, красная - наружу. Это свойство дифракционной решетки используется для исследования спектрального состава света (определения длин волн и интенсивностей всех монохроматических компонентов), т. е. дифракционная решетка может быть использована как спектральный прибор.

Дифракционные решетки, используемые в различных областях спектра, отличаются размерами, формой, материалом поверхности, профилем штрихов и их частотой (от 6000 до 0,25 штрих/мм, что позволяет перекрывать область спектра от ультрафиолетовой его части до инфракрасной). Например, ступенчатый профиль решетки позволяет концентрировать основную часть падающей энергии в направлении одного определенного ненулевого порядка. Используются высококачественные отражательные решетки и решетки «на просвет».

Дифракция на пространственной решетке. Формула Вульфа - Брэггов

Для наблюдения дифракционной картины необходимо, чтобы постоянная решетки была того же порядка, что и длина волны падающего излучения. Кристаллы, являясь трехмерными пространственными решетками, имеют постоянную порядка 10-10 м и, следовательно, непригодны для наблюдения дифракции в видимом свете (l » 10-7 м). Эти факты позволили немецкому физику М. Лауэ (1879—1960) прийти к выводу, что в качестве естественных дифракционных решеток для рентгеновского излучения можно использовать кристаллы, поскольку расстояние между атомами в кристаллах одного порядка с l рентгеновского излучения (» 10-12¸10 -8 м).

Простой метод расчета дифракции рентгеновского излучения от кристаллической решетки предложен независимо друг от друга Г. В. Вульфом (1863—1925) и английскими физиками – отцом Генри и сыном Лоуренсом Брэггами (отец (1862—1942) и сын (1890—1971)). Они предположили, что дифракция рентгеновского излучения является результатом его отражения от системы параллельных кристаллографических плоскостей (плоскостей, в которых лежат узлы (атомы) кристаллической решетки).

Представим кристаллы в виде совокупности параллельных кристаллографических плоскостей (рис.33.10), отстоящих друг от друга на расстоянии d. Пучок параллельных монохроматических рентгеновских лучей (1, 2) падает под углом скольжения q (угол между направлением падающих лучей и кристаллографической плоскостью) и возбуждает атомы кристаллической решетки, которые становятся источниками когерентных вторичных волн 1¢ и 2', интерферирующих между собой, подобно вторичным волнам, от щелей дифракционной решетки. Максимумы интенсивности (дифракционные максимумы) наблюдаются в тех направлениях, в которых все отраженные атомными плоскостями волны будут находиться в одинаковой фазе. Эти направления удовлетворяют формуле Вульфа — Брэггов

2dsinq = ml (m = 1,2,3,…), (33.19)

т. с. при разности хода между двумя лучами, отраженными от соседних кристаллографических плоскостей, кратной целому числу длин волн , наблюдается дифракционный максимум.

 Рис.33.10. Дифракция рентгеновских лучей на пространственной (кристаллической) решетке.

При произвольном направлении падения монохроматического рентгеновского излучения на кристалл дифракция не возникает. Чтобы ее наблюдать, надо, поворачивая кристалл, найти угол скольжения. Дифракционная картина может быть получена и при произвольном положении кристалла, для чего нужно пользоваться непрерывным рентгеновским спектром» испускаемым рентгеновской трубкой. Тогда для таких условий опыта всегда найдутся длины волн l, удовлетворяющие условию (33.19).

Формула Вульфа — Брэггов используется при решении двух важных задач:

1. Наблюдая дифракцию рентгеновских лучей известной длины волны на кристаллической структуре неизвестного строения и измеряя q и m, можно найти межплоскостное расстояние (d), т. е. определить структуру вещества. Этот метод лежит в основе рентгеноструктурного - анализа. Формула Вульфа - Брэггов остается справедливой и при дифракции электронов и нейтронов. Методы исследования структуры вещества, основанные на дифракции электронов и нейтронов, называются соответственно электронографией и нейтронографией. Электронография дает уникальную возможность определить величину параметра решетки (и её изменение вследствие различных воздействий) с ошибкой, не превышающей 2×10-14 м (!!!). Нейтронография позволяет исследовать такие тонкие явления, как тепловые колебания узлов кристаллической решетки. Правда, для получения достаточного потока нейтронов требуется атомный реактор…

2. Наблюдая дифракцию рентгеновских лучей неизвестной длины волны на кристаллической структуре при известной d и измеряя q и m, можно найти длину волны падающего рентгеновского излучения. Этот метод лежит в основе рентгеновской спектроскопии и позволяет производить прецизионный спектральный анализ, в том числе пленочных конструкций, хотя пространственное разрешение по современным понятиям оставляет желать лучшего.

Процессы в электрических цепях с сосредоточенными элементами носят колебательный характер и описываются электрическими колебаниями напряжений и токов в различных частях цепи. Эти колебания описывают скалярными функциями времени (t) и обозначают: u(t) - мгновенное значение напряжения, i(t) - мгновенное значение некоторого электрического колебания вообще.

Математика

Реакторы