Электроника Физика Электротехника Полупроводниковые материалы Теория конструктивных материалов Курс черчения Контольная работа

Конспект курса лекций по физике. Световые волны

Волновая Y-функция и ее статистический смысл

Экспериментальное подтверждение идеи де Бройля об универсальности корпускулярно-волнового дуализма, ограниченность применения классической механики к микрообъектам, диктуемая соотношением неопределенностей, а также противоречие целого ряда экспериментов с применяемыми в начале XX в. теориями привели к новому этапу развития квантовой теории — созданию квантовой механики, описывающей законы движения и взаимодействия микрочастиц с учетом их волновых свойств. Ее создание и развитие охватывает период с 1900 г. (формулировка Планком квантовой гипотезы) до 20-х годов XX в.; оно связано прежде всего с работами австрийского физика Эрвина Шредингера (1887—1961), немецкого физика Вернера Гейзенберга и английского физика Поля Дирáка (1902—1984).

На данном этапе развития (в 20-ых годах ХХ века) возникли новые принципиальные проблемы, в частности проблема физической природы воли де Бройля. Для выяснения этой проблемы сравним дифракцию световых волн и микрочастиц. Дифракционная картина, наблюдаемая для световых волн, характеризуется тем, что в результате наложения дифрагирующих волн друг на друга в различных точках пространства происходит усиление или ослабление амплитуды колебаний. Согласно волновым представлениям о природе света, интенсивность дифракционной картины пропорциональна квадрату амплитуды световой волны. По представлениям фотонной теории, интенсивность определяется числом фотонов, попадающих в данную точку дифракционной картины. Следовательно, число фотонов в данной точке дифракционной картины задается квадратом амплитуды световой волны, в то время как для одного фотона квадрат амплитуды определяет вероятность попадания фотона в ту или иную точку.

Дифракционная картина, наблюдаемая для микрочастиц, также характеризуется неодинаковым распределением потоков микрочастиц, рассеянных или отраженных по различным направлениям, — в одних направлениях наблюдается большее число частиц, чем в других. Наличие максимумов в дифракционной картине с точки зрения волновой теории означает, что эти направления соответствуют наибольшей интенсивности волн де Бройля. С другой стороны, интенсивность волн де Бройля оказывается больше там, где имеется большее число частиц, т. е. интенсивность волн де Бройля в данной точке пространства определяет число частиц, попавших в эту точку. Таким образом, дифракционная картина для микрочастиц является проявлением статистической (вероятностной) закономерности, согласно которой частицы попадают в те места, где интенсивность волн де Бройля наибольшая.

Необходимость вероятностного подхода к описанию микрочастиц является важнейшей отличительной особенностью квантовой теории. Можно ли волны де Бройля истолковывать как волны вероятности, т. е. считать, что вероятность обнаружить микрочастицу в различных точках пространства меняется по волновому «синусоидальному» закону? Такое толкование волн де Бройля неверно уже хотя бы потому, что тогда вероятность обнаружить частицу в некоторых точках пространства может быть отрицательна, что не имеет смысла.

Чтобы устранить эти трудности, немецкий физик М. Борн (1882—1970) в 1926 г. предположил, что по волновому закону меняется не сама вероятность, а величина, названная амплитудой вероятности и обозначаемая Y (х, у, z, t). Эту величину называют также волновой функцией (или Y-функцией). Амплитуда вероятности может быть комплексной величиной, и вероятность W пропорциональна квадрату ее модуля:

 W~|Y(x,e,z,t)½2  (40.11)

(½Y½2 =Y×Y*, Y* — функция, комплексно сопряженная с Y). Таким образом, описание состояния микрообъекта с помощью волновой функции имеет статистический, вероятностный характер: квадрат модуля волновой функции (квадрат модуля амплитуды волн де Бройля) определяет вероятность нахождения частицы в момент времени t в области с координатами x и х+dx, y и y+dy, z и z+dz.

Итак, в квантовой механике состояние микрочастиц описывается принципиально по-новому — с помощью волновой функции, которая является основным носителем информации об их корпускулярных и волновых свойствах. Вероятность нахождения частицы в элементе объемом dV равна

dW = ½Y½2dV.  (40.12)

Величина

 

(квадрат модуля Y-функции) имеет смысл плотности вероятности, т. е. определяет вероятность нахождения частицы в единичном объеме в окрестности точки с координатами х, у, z. Таким образом, физический смысл имеет не сама Y-функция, а квадрат ее модуля |Y|2, которым задастся интенсивность волн де Бройля.

Вероятность найти частицу в момент времени t в конечном объеме V, согласно теореме сложения вероятностей, равна

 

Так как ½Y½2dV определяется как вероятность, то необходимо волновую функцию Y нормировать так, чтобы вероятность достоверного события обращалась в единицу, если за объем V принять бесконечный объем всего пространства. Это означает, что при данном условии частица должна находиться где-то в пространстве (вспомните задачу о поимке льва в пустыне: «берем пустыню, песок просеиваем…»). Следовательно, условие нормировки вероятностей

  (40.13)

где данный интеграл (40.13) вычисляется по всему бесконечному пространству, т. е. по координатам х, у, z от - ¥ до +¥. Таким образом, условие (40.13) говорит об объективном существовании частицы в пространстве.

Чтобы волновая функция являлась объективной характеристикой состояния микрочастиц, она должна удовлетворять ряду ограничительных условий, обычных с точки зрения математики. Функция Y, характеризующая вероятность обнаружения действия микрочастицы в элементе объема, должна быть непрерывной (вероятность не может изменяться скачком), непрерывными должны быть и её первые производные; конечными должны быть вторые производные (вероятность не может быть больше единицы), однозначной (вероятность не может быть неоднозначной величиной).

Волновая функция удовлетворяет принципу суперпозиции: если система может находиться в различных состояниях, описываемых волновыми функциями Y1,Y2,....,Yn,…, то она также может находиться в состоянии Y, описываемом линейной комбинацией этих функций:

где Сn (n = 1, 2, ...) - произвольные, вообще говоря, комплексные числа. Сложение волновых функций (амплитуд вероятностей), а не вероятностей (определяемых квадратами модулей волновых функций) принципиально отличает квантовую теорию от классической статистической теории, в которой для независимых событий справедлива теорема сложения вероятностей.

Волновая функция Y, являясь основной характеристикой состояния микрообъектов, позволяет в квантовой механике вычислять средние значения физических величин, характеризующих данный микрообъект. Например, среднее расстояние <r> электрона от ядра вычисляют по формуле

где интегрирование производится, как и в случае (40.13).

Задача анализа процессов в цепи сводится к задачи Коши, т.е. к решению системы интегро-дифференциальных уравнений с заданными начальных условиями Для линейной цепи, составленной из постоянных элементов, система уравнений является линейной с постоянными коэффициентами. При исследовании процессов свободных колебаний в цепях, а также исследовании вынужденных колебаний, решение системы уравнений удобно находить операторным методом, т.к. функции описывающие источники колебательного процесса - воздействия, а, следовательно, и функции, описывающие возникающие колебания - отклики, преобразуемы по Лапласу.

На главный сайта: Курс физики