Электроника Физика Электротехника Полупроводниковые материалы Теория конструктивных материалов Курс черчения Контольная работа

Конспект курса лекций по физике. Атомная физика

Рентгеновские спектры

Большую роль в выяснении строения атома, а именно распределения электронов по оболочкам, сыграло излучение, открытое в 1895 г. немецким физиком К. Рентгеном (1845—1923) и названное рентгеновским. Самым распространенным источником рентгеновского излучения является рентгеновская трубка, в которой сильно ускоренные электрическим полем электроны бомбардируют анод (металлическая мишень из тяжелых металлов, например W или Pt), испытывая на нем резкое торможение. При этом возникает рентгеновское излучение, представляющее собой электромагнитные волны с длиной волны примерно 10-12 – 10-8 м.

Рентгеновские лучи возникают при бомбардировке быстрыми электронами твердых мишеней. Существует два вида рентгеновских трубок — ионные и электронные. В ионных трубках поддерживается тлеющий разряд при низком давлении (порядка 10-3 мм рт. ст.). В электронных трубках (рис. 42.4) свободные электроны возникают вследствие термоэлектронной эмиссии с нагреваемого током катода (вольфрамовой спирали). Цилиндр Ц служит для фокусировки электронного пучка. Давление газа в таких трубках составляет 10-5¸10-7 мм рт. ст. Антикатод трубки Ак служит одновременно и анодом. Электронные трубки гораздо устойчивее и проще в эксплуатации. По этой причине ионные трубки теперь применяются редко.

Рис.42.4. Схема электронной рентгеновской трубки.

Почти вся энергия электронов выделяется на антикатоде в виде тепла (в излучение превращается лишь 1—3% энергии). Поэтому в мощных трубках антикатод приходится интенсивно охлаждать. С этой целью в теле антикатода делаются каналы, по которым циркулирует охлаждающая жидкость (вода или масло).

Волновая природа рентгеновского излучения доказана опытами по его дифракции. Исследование спектрального состава рентгеновского излучения показывает, что его спектр имеет сложную структуру (рис. 42.5) и зависит как от энергии электронов, так и от материала анода.

Рис.42.5. Вид спектра рентгеновского излучения.

Спектр представляет собой наложение сплошного спектра, ограниченного со стороны коротких длин волн некоторой границей lmin, называемой границей сплошного спектра, и линейчатого спектра — совокупности отдельных линий, появляющихся на фоне сплошного спектра.

Исследования показали, что характер сплошного спектра совершенно не зависит от материала анода, а определяется только энергией бомбардирующих анод электронов. Детальное исследование свойств этого излучения показало, что оно испускается бомбардирующими анод электронами в результате их торможения при взаимодействии с атомами мишени. Сплошной рентгеновский спектр поэтому называют тормозным спектром. Этот вывод находится в согласии с классической теорией излучения, так как при торможении движущихся зарядов должно действительно возникать излучение со сплошным спектром.

Из классической теории, однако, не вытекает существование коротковолновой границы сплошного спектра. Из опытов следует, что чем больше кинетическая энергия электроне», вызывающих тормозное рентгеновское излучение, тем меньше lmin. Это обстоятельство, а также наличие самой границы объясняются квантовой теорией. Очевидно, что предельная энергия кванта соответствует такому случаю торможения, при котором вся кинетическая энергия электрона переходит в энергию кванта, т. е.

где U - разность потенциалов, за счет которой электрону сообщается энергия Emax, nmax — частота, соответствующая границе сплошного спектра. Отсюда граничная длина волны

   (42.14) 

что полностью соответствует экспериментальным данным. Измеряя границу рентгеновского сплошного спектра, по формуле (42.14) можно определить экспериментальное значение постоянной Планка h, которое наиболее точно совпадает с современными данными.

При достаточно большой энергии бомбардирующих анод электронов на фоне сплошного спектра появляются отдельные резкие линии — линейчатый спектр, определяемый материалом анода и называемый характеристическим рентгеновским спектром (излучением).

По сравнению с оптическими спектрами характеристические рентгеновские спектры элементов совершенно однотипны и состоят из нескольких серий, обозначаемых К, L, M, N и 0. Каждая серия, в свою очередь, содержит небольшой набор отдельных линий, обозначаемых в порядке убывания длины волны индексами a, b,g, ... (Кa, Кb, Кg, ..., La,Lb,Lg, …). При переходе от легких элементов к тяжелым структура характеристического спектра не изменяется, лишь весь спектр смещается в сторону коротких волн. Особенность этих спектров заключается в том, что атомы каждого химического элемента, независимо от того, находятся ли они в свободном состоянии или входят в химическое соединение, обладают определенным, присущим только данному элементу линейчатым спектром характеристического излучения. Так, если анод состоит из нескольких элементов, то и характеристическое рентгеновское излучение представляет собой наложение спектров этих элементов.

Рассмотрение структуры и особенностей характеристических рентгеновских спектров приводит к выводу, что их возникновение связано с процессами, происходящими во внутренних, застроенных электронных оболочках атомов, которые имеют сходное строение.

Разберем механизм возникновения рентгеновских серий, который схематически показан на рис. 42.6.

Рис. 42.6. Структура характеристического рентгеновского спектра.

Предположим, что под влиянием внешнего электрона или высокоэнергетического фотона вырывается один из двух электронов К-оболочки атома. Тогда на его место может перейти электрон с более удаленных от ядра оболочек L, М, N,.... Такие переходы сопровождаются испусканием рентгеновских квантов и возникновением спектральных линий К-серия: Ka(L®K), Кb®К), Kg(N®K) и т. д. Самой длинноволновой линией К-серии является линия Кa. Частоты линий возрастают в ряду Ka® Kb® Kg, поскольку энергия, высвобождаемая при переходе электрона на К-оболочку с более удаленных оболочек, увеличивается. Наоборот, интенсивности линий в ряду Ka® Kb® Kg, убывают, так как вероятность переходов электронов с L-оболочки на К-оболочку больше, чем с более удаленных оболочек М и N. К-серия сопровождается обязательно другими сериями, так как при испускании ее линий появляются вакансии в оболочках L, М,..., которые будут заполняться электронами, находящимися на более высоких уровнях.

Аналогично возникают и другие серии, наблюдаемые, впрочем, только для тяжелых элементов. Рассмотренные линии характеристического излучения могут иметь тонкую структуру, поскольку уровни, определяемые главным квантовым числом, расщепляются согласно значениям орбитального и магнитного квантовых чисел.

Исследуя рентгеновские спектры элементов, английский физик Г. Мозли (1887—1915) установил в 1913 г. соотношение, называемое законом Мозли:

 (42.15)

где v — частота, соответствующая данной линии характеристического рентгеновского излучения, R — постоянная Ридберга, s — постоянная экранирования, m = l, 2, 3, ... (определяет рентгеновскую серию), п принимает целочисленные значения начиная с m+1 (определяет отдельную линию соответствующей серии). Закон Мозли (42.15) подобен обобщенной формуле Бальмера для атома водорода. 

Смысл постоянной экранирования заключается в том, что на электрон, совершающий переход, соответствующий некоторой линии, действует не весь заряд ядра Ze, а заряд (Z—s)e, ослабленный экранирующим Действием других электронов. Например, для Ka-линии s = 1, и закон Мозли запишется в виде

 (42.16)

Электрические цепи, для которых волновой характер процесса представляет основу используемых свойств цепи, а замена распределенных элементов сосредоточенными приводит к утрате этих основных свойств цепи, называют цепями с распределенными элементами. Токи и напряжения в таких цепях являются функциями координат сечения наблюдения цепи и времени t. При составлении систем уравнений с распределенными элементами возникают трудности: I) не выполняются законы Кирхгофа; 2) очень сложно произвести выбор реальной модели цепи с распределенными элементами; 3) напряжения и токи зависят не только от времени, но и от пространственных координат.

На главный сайта: Курс физики