Электроника Физика Электротехника Полупроводниковые материалы Теория конструктивных материалов Курс черчения Контольная работа

Конспект курса лекций по физике. Классическая физика

Основы специальной теории относительности (СТО).

Предпосылки создания, работы Майкельсона-Морли, Фитцджеральда, Лоренца, Эйнштейна.

 Естественный скептический вопрос: каковы же границы применимости преобразований Галилея возник перед человечеством к конце ХIX – начале ХХ веков. Возник он в связи с поиском Абсолютной системы отсчета (на существовании которой сам Ньютон, кстати, не настаивал). Он возник в связи с изучением парадоксальных свойств эфира – гипотетической абсолютно упругой среды, в которой свет распространяется без затухания, как в абсолютно твердой среде. В то же самое время обычные макротела движутся в этой среде, «не замечая» ее бесконечной твердости…

 Сомнения в бесконечной применимости преобразований Галилея, по крайней мере, в части закона сложения скоростей, возникли при анализе результатов опытов Майкельсона-Морли по определению скорости «эфирного ветра» из сравнения скорости света, излученного источником, движущимся вдоль направления перемещения Земли на орбите и скорости света вдоль направления, перпендикулярного касательной к орбите. Измерения производились на чрезвычайно точном приборе - интерферометре Майкельсона (рис.3.1). Земля остроумно была выбрана в качестве объекта, движущегося с линейной скоростью 30 км/сек, практически до сих пор недостижимой современной техникой для массивных объектов.

 Схему опыта предложил Максвелл , автор электромагнитной теории света. Он должен был позволить обнаружить движение Земли относительно эфира, если бы свет распространялся в эфире, а эфир покоился бы в гелиоцентрической системе координат.

Опыт Майкельсона, впервые поставленный в 1881 году, и давший отрицательный ответ, поставлен был фундаментально: плита толщиной до 0,5 м, на которой смонтированы зеркала, была изготовлена из гранита, слабо расширяющегося с нагреванием, и плавала в ртути для бездеформационного поворота.  Первичная точность опыта позволяла обнаружить «эфирный ветер» при скорости 10 км/с. Позднее он многократно повторялся, точность была повышена до возможности обнаружения ветра со скоростью 30 м/с.

Но ответ был стабильно нулевым.

Рис. 3.1. а) Общий вид интерферометра Майкельсона. б) Принципиальная схема опыта Майкельсона. Луч света от источника 1 расщепляется в полупрозрачной пластинке Р на два луча 1 и 2,идущие вдоль и перпендикулярно направлению движения Земли по орбите. Скорость движения Земли по орбите отмечена стрелкой и буквой V. Лучи света 1 и 2 отражаются соответственно от зеркал S1 и S2 и вновь возвращаются к пластинке Р. После отражения и преломления в направлении 3 идут два луча. В этом направлении и наблюдается интерференционная картина. Решающий шаг эксперимента состоит в повороте всей установки на 90°; луч 1 идет теперь по направлению движения Земли, а луч 2 - нормально движению. Если бы свет распространялся по неподвижному эфиру, оптическая разность хода лучей 1 и 2 стала бы иной и интерференционная картина, наблюдаемая в направлении 3, изменилась бы (произошло бы смещение интерференционных полос). Однако никакого смещения полос опыт не обнаружил.

Преобразования Галилея не подтвердились при наблюдении движений с большими скоростями. Например, не оказалось нарушений в ритме периодического движения двойных звезд, между тем как направление скорости их движения меняется на прямом и обратных путях обращения.

Скорость света, таким образом, оказалась не зависящей от движения источника.

Со времени проведения опытов Майкельсоном и Морли в 1881 году и до 1905 года – до разработки основ СТО – делались многочисленные попытки выработать гипотезы, в которых результаты ключевого опыта нашли бы объяснение. И при этом все пытались сохранить эфир, видоизменяя лишь его свойства.

Наиболее известны любопытные попытки ирландского физика Джорджа Фитцджеральда и голландского физика Хендрика Лоренца. Первый предложил идею сокращения длины тела в направлении движения, тем большего, чем выше скорость движения. Лоренц предположил возможность локального течения времени («местное время») в подвижной системе, по законам, отличающимся от закономерностей в неподвижной системе. Лоренц предложил модифицировать преобразования координат Галилея.

 Преобразование координат Лоренца:

 x` = k · (x - V · t); x = k · (x` + V · t`);

 y` = y; y = y`;

 z` = z; z = z`;

 t` = k · (t - x ·V / c2); t = k · (t` + x` · V / c2);

 По виду лоренцевские преобразования заметно отличаются от галилеевских лишь в части описания времени. Коэффициент k определяется из соотношения

 

где V – скорость движения подвижной системы вдоль оси Х неподвижной, с – скорость света в вакууме с=3×108 м/с. Остальные обозначения - прежние. Заметьте, что переход из одной системы в другую осуществляется переменой знака с одновременным переносом штрихов справа налево или наоборот.

Сам Лоренц рассматривал свой набор уравнений как подгонку уравнений под результаты эксперимента Майкельсона-Морли, Лоренц умер в 1928 году, так и не примирившись с мыслью о ненужности эфира.

Очень значительные усилия в направлении решения этого вопроса были сделаны французом Анри Пуанкаре (по его предложению в 1904 году вышеприведенный набор уравнений был назван преобразованиями координат Лоренца).

Постулаты Эйнштейна в специальной теории относительности.

  Однако, по мнению большинства физиков, решающий вклад в создание специальной, а затем и общей теории относительности был внесен Альбертом Эйнштейном. В 1905 году в журнале «Аннален фюр физик» 26-летний, никому неизвестный служащий швейцарского патентного бюро Альберт Эйнштейн опубликовал небольшую 3-страничную статью «К электродинамике движущихся сред». По утверждениям историков физики, о результатах опытов Майкельсона-Морли он не слышал.

Общность колебательных процессов, их разнообразие и в тоже время их специфическое своеобразие, играют существенную роль в установлении внутренних связей между весьма разнообразными, на первый взгляд, явлениями. Этим обстоятельством, как мне кажется, и обусловливается, главным образом, принципиальное значение и важность интересующей нас области. Весьма существенно следующее: в области колебаний особенно объективно выступает взаимодействие между физикой и математикой, влияние потребностей физики на развитие математических методов и обратное влияние математики на физические знания.

На главную сайта: Курс физики