Контрольная по математике Школьный курс математики Вычисление интегралов Неопределенный интеграл Вычислить криволинейный интеграл Двойной интеграл Тройной интеграл

Математика решение задач курсовой работы

Основные методы интегрирования

Согласно формуле Ньютона-Лейбница  при вычислении определенного интеграла надо сначала найти первообразную  или неопределенный интеграл а затем вычислить разность  значений первообразной, поэтому таблица неопределенных интегралов, указанная в пункте 1.3. справедлива и для определенных интегралов.

Метод непосредственного интегрирования в определенном интеграле основывается на тождественных преобразованиях подынтегральной функции.

Пример 40. Вычислить интеграл

Решение. Преобразуем подынтегральную функцию, используя тождество квадрат суммы двух слагаемых:

Пример 41. Вычислить интеграл

Решение.

Пример 42. Вычислить интеграл

Решение.

Пример 43. Вычислить интеграл

Решение. Преобразуем подынтегральную функцию. Для этого числитель дроби почленно разделим на знаменатель:

Используя свойство 2 определенного интеграла, получим

Рассмотрим каждый интеграл отдельно. Умножим и разделим числитель первой подынтегральной функции на 2:

Согласно соотношению  получим

Во втором интеграле воспользуемся свойством 1:

Значит, данный интеграл равен

При вычислении определенных интегралов широко используются метод замены переменной и метод интегрирования по частям.

Пусть для вычисления интеграла  от непрерывной функции сделана подстановка

Теорема. Если:

1) функция  и её производная  непрерывны при

2) множеством значений функций  при  является отрезок

3)    тогда

 

 (2.13) 

Формула (2.13) называется формулой замены переменной в определенном интеграле.

Отметим, что:

1) при вычислении определенного интеграла методом подстановки возвращаться к старой переменной не требуется;

2) часто вместо подстановки  применяют подстановку

3) не следует забывать менять пределы интегрирования при замене переменных.


пеноплекс сертификат соответствия

На главный раздел сайта: Курс математики