Контрольная по математике Школьный курс математики Вычисление интегралов Неопределенный интеграл Вычислить криволинейный интеграл Двойной интеграл Тройной интеграл

Конспекты лекций по математике. Примеры решений

Задача 20. Вычислить

,

где D – правая половина кольца (см. рисунок).

Решение. Будем вычислять интеграл в полярных координатах по формуле (35):

Здесь .

Так как  (формулы перехода к полярным координатам), то  

Решение типовых задач по математике Исследование функции Конспекты лекций, лабораторные и задачи курсовых работ

Тогда уравнения окружностей  и  принимают вид  

Следовательно,

Ряды

Задача 21. Определить, какие ряды сходятся:

А)  Б)  В)

Решение.

1. К ряду применим радикальный признак Коши: если , то положительный ряд  сходится при  и расходится, когда

Так как , то ряд расходится.

2. Рассмотрим ряд  Проверим необходимое условие сходимости: если ряд   сходится, то .

Поскольку  , необходимое условие не выполняется, значит, ряд расходится.

3. При исследовании сходимости ряда  можно воспользоваться предельным признаком сравнения положительных рядов: если существует конечный и отличный от нуля предел   то положительные ряды  и одинаковы в смысле сходимости.

Для сравнения возьмем обобщенный гармонический ряд

, сходящийся при  и расходящийся для  При  получим сходящийся ряд .

Применим теорему сравнения

 

Предел конечен и отличен от нуля, поэтому ряд  также сходится.

Задача 22. Исследовать на сходимость ряды:

1)  2) 

Решение.

1. Рассмотрим ряд  .

Он знакочередующийся. К таким рядам применим признак Лейбница. Знакочередующийся ряд

 сходится при условии:

 1)

 2) .

Так как  и , условия признака Лейбница выполняются, значит, ряд сходится. Если знакопеременный ряд сходится, то эта сходимость называется абсолютной или условной в зависимости от того, сходится или расходится соответствующий ряд из абсолютных величин членов знакопеременного ряда. Составим ряд из абсолютных величин

.

Получили положительный ряд. Применяем к нему достаточный признак сходимости – признак Даламбера: если  то положительный ряд  сходится при  и расходится, когда

Поскольку

,

ряд  сходится, следовательно, ряд  сходится абсолютно.

2. Рассмотрим ряд  .

Условия признака Лейбница выполняются:

1) 2)  Значит, ряд сходится. Исследуя ряд на абсолютную сходимость, составим ряд из абсолютных величин  Применяем интегральный признак сходимости Маклорена-Коши: положительный ряд  сходится или расходится в зависимости от того, сходится или расходится  (здесь  при  - непрерывная, положительная и монотонно убывающая функция, такая что ).

Вычисляем

Это означает, что несобственный интеграл расходится, тогда расходится ряд , а исходный ряд  сходится условно.

Отметим, что при исследовании сходимости ряда

можно было использовать предельный признак сходимости (см. задачу 21).


На главный раздел сайта: Курс математики