Контрольная
Культура
Электротехника
Лабораторные
Школьный курс
Термех
Курсовая
Атомные станции

Лекции

Черчение
Физика
Реакторы
Интеграл
Выполнение чертежей
Конспект
На главную

Электротехнические материалы Теория конструктивных материалов

Для материалов вводят несколько характерных температурных точек, указывающих работоспособность и поведение материалов при изменении температуры.

Теплоемкость- это способность накапливать тепловую энергию в материале при его нагревании Практически все свойства материалов зависят от температуры.

Обычно это учитывается введением т.н. температурного коэффициента.

Стали являются многокомпонентными системами на основе железа. В зависимости от добавок их свойства сильно меняются. Первой и основной добавкой к железу является  углерод.

Бетон представляет собой композицию, составленную из затвердевшей смеси цемента, заполнителя, воды

Разработка конкретных узлов и устройств ставит ряд общих и специфических задач для используемых материалов. Во первых, они должны выполнять те функции, которые заложены в исходные требования.

Наиболее распространенными из цветных металлов являются медь, алюминий, олово, титан, а также тугоплавкие металлы молибден и вольфрам.

Температурный коэффициент сопротивления, потери, нагрев проводников

Возвращаясь к температурному коэффициенту для проводниковых резистивных материалов следует упомянуть о существовании материалов с практически нулевым температурным коэффициентом сопротивления.

Материалы для проводов. Медь, алюминий

Проводники в месте контакта отличаются от проводников в объеме проводов несколькими обстоятельствами их функционирования.

Механические свойства материалов. Удлинение, деформация, модуль упругости. Разрушающие напряжения при различных видах нагрузки

          В процессе эксплуатации на материал действуют механические нагрузки. Основные виды нагрузки: сжатие, растяжение, сдвиг, кручение.

Изменения размеров и формы тела под действием нагрузок называютсядеформациями. Их легко проиллюстрировать на примере стержня.

Если к стержню площадью s приложить силу F вдоль оси, то его продольный размер lи поперечный размер r изменятся

Dl/l = p /E,                                                                                                      (4.4)

Dr/r = -sp /E,

где p=F/s- механическое напряжение, E - модуль Юнга или модуль всестороннего сжатия (или растяжения), s- коэффициент Пуассона. Размерности p, E - Н/м2, s - безразмерна.

Если сила сжимает стержень, то на стержень действует давление,  продольное  удлинение отрицательно, зато поперечное положительно. В случае растягивающей силы, т.е. действия напряжения - наоборот. Удлинение вдоль стержня,  положительно, а поперек - отрицательно. При снятии нагрузки исходные размеры восстанавливаются. Такие деформации называются упругими.

ris 1-3.gif (1927 bytes)
Выражение (4.4) показывает линейную связь нагрузки с удлинением. 

Это выражение называетсязаконом Гука. Он характерен для упругих деформаций.

          По мере увеличения нагрузки пропорциональность между изменением размера и нагрузкой перестает выполняться. Примерно при этих же нагрузках, после их снятия исходный размер полностью не восстанавливается.

Предел упругости (s0.05) - напряжение, при котором остаточная деформация не превышает 0.05%.

Предел текучести (s0.2) - напряжение, при котором происходит удлинение до 0.2% без увеличения нагрузки. 

Предел прочностиили временное сопротивление sв-напряжение, соответствующее максимальной нагрузке.  

           Помимо указанных видов деформации при натяжении рассматривают механическую прочность при разных видах нагрузки, например при сжатии, при изгибе. Механизм разрушения во всех случаях заключается в появлении и прорастании трещин. Различают два вида разрушения - хрупкое и вязкое. При хрупком разрушении деформации малы и скорость разрушения велика. В некоторых случаях она достигает скорости километров в секунду. При вязком разрушении перед трещиной существует значительная пластическая деформация и скорость распространения трещины мала.

Пластическая деформация- часть деформации, которая остается после снятия нагрузки.

Твердость материала. Свойство материала противостоять деформации при локальном контакте называется твердостью. Существует множество шкал твердости. Например шкала Мооса. Она применяется в основном для минералов. По ней выбраны десять материалов, каждый из ряда царапает все нижележащие и царапается вышележащими. Наибольшую твердость имеет алмаз, затем идет корунд и т.д. Нефрит имеет пятую позицию, сталь, в зависимости от закалки и типа - пятую или шестую. Известняк - третью.

Другие шкалы: Бригнелля, Роквелла, Виккерса и т.д. основаны на вдавливании в материал шарика или алмазной призмы и измерении размеров полученной ямки. Далее по специальным таблицам определяют соответствующую твердость. 


Математика

Реакторы