Проект второй очереди Нововоронежской АЭС

Русская мебель XIX века
История мебели
ДИЗАЙН-ПРОЕКТИРОВАНИЕ КОСТЮМА
Моделирование
Стиль
Ассортимент
ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ
ДЕТСКОЙ ОДЕЖДЫ
ОБРАЗНО-АССОЦИАТИВНЫЙ ПОДХОД
К ПРЕКТИРОВАНИЮ КОСТЮМА
Ансамбль
КЛАССИФИКАЦИЯ ПОТРЕБИТЕЛЕЙ
И КОЛЛЕКЦИЙ
ОСНОВНЫЕ ТЕНДЕНЦИИ В СОВРЕМЕННОМ
ДИЗАЙНЕ ОДЕЖДЫ
Художественное восприятие произведений
дизайна
Работа с деревом Советы мастера
Курс
лекций по ТОЭ и типовые задания
Источники электрической энергии
Расчет цепей постоянного тока по законам
Кирхгофа
Выполним расчет цепи по методу контурных токов
Реактивные сопротивления элементов цепи
Найдем комплексные амплитуды токов
Параметры элементов схем реактивных
двухполюсников
Амплитудный и фазовый спектры напряжения
Расчет переходных процессов в электрических
цепях
Найти токи во всех ветвях
Расчет переходных процессов при импупьсных
воздействиях

Атомная энергетика

Энергетический реактор на быстрых нейтронах
Принцип работы атомных электрических станций
Примеры курсового расчета по дисциплине
"Теоретическая механика"
Проекция силы на ось
Уравнения равновесия плоской системы
сходящихся сил
Момент сил относительно точки и оси
Сумма статических моментов
Ускорение точки
Кинематические пары и цепи
Работа и мощность при вращательном движении
Сила трения качения
Построение эпюр продольных сил
Расчеты на срез и смятие
Расчеты на прочность и жесткость
Понятие о сложном деформированном
состоянии
Понятие о теориях прочности
Основные требования к машинам и деталям
Классификация машин
Храповые механизмы
Ременные передачи
Шпоночные и зубчатые (шлицевые) соединения
Назначение и классификация муфт
Сварные соединения

 

Повышение безопасности энергоблока №4 НВАЭС и надёжности систем, обеспечивающих охлаждение активной зоны при авариях с потерей теплоносителя (LOCA).

В изначальной проектной схеме САОЗ (насосы АПН) не было обеспечено выполнения принципа независимости системы безопасности от систем нормальной эксплуатации (в системе использовались трубопроводы возврата продувки первого контура), принципа единично отказа и защиты от отказа по общей причине. Основные мероприятия по модернизации САОЗ соответствовали основным рекомендациям МАГАТЭ по вопросам проекта (TECDOC-640). В результате выполненных работ была повышена надежность работы системы и безопасность энергоблока:

реализована двухканальная система ввода бора;

обеспечена независимость систем безопасности между собой и систем нормальной эксплуатации;

обеспечено резервирование активных элементов;

запуск двух насосов в канале позволяет преодолеть течь первого контура эквивалентным диаметром Ду100;

установка байпаса на напоре насосов аварийного ввода бора позволяет исключить отказ канала по общей причине;

разделение групп насосов по питанию обеспечивает защиту системы от отказов по общей причине.

Как уже говорилось, результаты выполняемых в настоящее время работ показали принципиальную техническую возможность дальнейшего продления срока эксплуатации блока №4 сверх 45-ти лет после 2017 года. Однако, вопросы безопасности блока №4 при его сегодняшнем составе САОЗ не соответствуют требованиям действующих нормативных документов в области использования атомной энергии – в частности при рассмотрении полного спектра аварий с потерей теплоносителя (вплоть до LOCA – Ду 500).

Также нельзя игнорировать неудачный опыт попытки продолжения эксплуатации блоков с ВВЭР-440/В-230 на АЭС "Козлодуй" и АЭС "Богунице". Технические решения по модернизации, выполненные эксплуатирующими организациями этих АЭС не позволили ликвидировать (нивелировать) известные недостатки РУ первого поколения с ВВЭР-440/В-230. В тоже время РУ второго поколения с ВВЭР-440/В-213 успешно эксплуатируются в ряде стран Восточной Европы (а на АЭС "Моховце" ведутся работы по вводу в эксплуатацию еще двух блоков В-213), и их уровень безопасности соответствует современным требованиям МАГАТЭ к эксплуатируемым АЭС.

Поэтому одной из главных целей в концепции повышения уровня безопасности при повторном продлении срока эксплуатации блока №4 до 60 лет была определена цель расширения спектра проектных аварий вплоть до разрыва ГЦТ Ду 500. При этом предложены следующие технические решения достижения цели:

модернизация САОЗ для обеспечения охлаждения активной зоны реактора при разрывах трубопроводов первого контура с условным диаметром более 100 мм (МПА при LOCA):

внедрение пассивной системы охлаждения активной зоны (гидроёмкости САОЗ);

внедрение активной системы охлаждения активной зоны низкого давления (насосы аварийной подпитки первого контура низкого давления);

модернизация ГО РУ для обеспечения его целостности при указанной выше МПА и обеспечения непревышения установленных критериев по радиологическим последствиям;

учитывая рекомендацию НТС "Концерна Росэнергоатом" об окончательном останове энергоблока №3 по окончании 45-ти летнего срока эксплуатации, продление РУ энергоблока №4 осуществляется с использованием систем безопасности блока №3. Конкретно, например, может быть увеличен объём герметичных помещений за счет объединения ГО блоков №3 и №4 с использованием двух СВК.

Обоснование технического решения а) было поручено выполнить Главному конструктору РУ блока №4 ОАО ОКБ "ГИДРОПРЕСС", включая:

–  определение требований к вновь устанавливаемому оборудованию и модернизируемому САОЗ;

–  подтверждение расчетным обоснованием выполнение принятых приёмочных критериев для аварий при исходном событии LOCA Ду 500.

Таблица 1. Проектные пределы по степени повреждения твэл и расчётные приёмочные критерии при LOCA

Срок
эксплуатации

МПА с LOCA

Проектный предел по степени повреждения твэл при МПА с LOCA

Расчетные приемочные критерии при LOCA

1971-2002 г.г.

проектный срок

Ду 32 мм

Дополнительная разгерметизация твэл при аварии отсутствует

Кризис теплоотдачи отсутствует, температура оболочки твэл – не более 350°С

2002-2017г.г.

продление срока эксплуатации

Ду 100 мм

Дополнительная разгерметизация твэл при аварии отсутствует

Ду£32 мм

Кризис теплоотдачи отсутствует, температура оболочки твэл – не более 350°С.

32 мм<Ду£100 мм

Температура оболочки не более 600°С

2017-2032г.г.

продление сверх 45 лет

Ду 500 мм

Дополнительная разгерметизация твэл при аварии отсутствует

Ду£32 мм

Кризис теплоотдачи отсутствует, температура оболочки твэл – не более 350°С.

32 мм<Ду£100 мм

Температура оболочки не более 600°С

100 мм<Ду£500 мм

Температура оболочки не более 800°С.

Эквивалентная степень окисления оболочки твэла должна быть не более 18% от первоначальной толщины.

Отсутствует пластическая деформация оболочек твэлов.

В Таблице 1 приведены проектные пределы по степени повреждения твэл и расчётные приёмочные критерии при LOCA, которые устанавливались для активной зоны на всех этапах эксплуатации и модернизации блока №4. При продлении срока эксплуатации сверх 45-ти лет они установлены строже, чем в проекте РУ второго поколения ВВЭР-440/В-213 для аналогичного исходного события аварии.

Результаты выполненного для блока №4 теплогидравлического анализа для аварии с исходным событием «Разрыв ГЦТ Ду 500 мм» (с использованием модернизированной конфигурации САОЗ) показывают непревышение температурой оболочек твэлов значения 800 °С (рис. 2). На основании анализа результатов работ ОАО "ВНИИНМ", выполненных для энергоблоков № 3 и № 4 Кольской АЭС (проект РУ В-213), в которых рассмотрено поведение твэлов в аварии с исходным событием «Разрыв ГЦТ Ду 500 мм», с достижением максимальных температур оболочек твэлов около 830 °С, можно сделать предварительное заключение, аналогичное сделанному ОАО "ВНИИНМ" для энергоблоков № 3 и № 4 Кольской АЭС – разгерметизации исходно герметичных твэлов и превышения предельного значения (18 %) эквивалентной степени окисления оболочки твэлов в данной аварии на блоке №4 не прогнозируется. Характер изменения параметров теплоносителя в реакторе и условия эксплуатации самих твэлов в течении рассматриваемой аварии можно считать качественно совпадающими с протеканием аналогичной аварии для РУ ВВЭР-440 проекта В-213, что позволяет также подтвердить отсутствие пластической деформации оболочек твэл.

Рис. 2 Разрыв холодной нитки ГЦТ полным сечением на входе в реактор. Максимальная температура оболочек твэлов

Таким образом, показано, что предложенная в рамках Концепции продления срока эксплуатации энергоблока № 4 Нововоронежской АЭС конфигурация систем безопасности позволяет обеспечить охлаждение активной зоны в рассмотренном исходном событии. При этом САОЗ блока № 4 должна состоять из пассивной и активной частей. Пассивная часть САОЗ включает в себя систему ГЕ САОЗ, активная часть САОЗ включает в себя системы аварийной подпитки первого контура с насосами высокого и низкого давления.

Пассивная часть системы аварийного охлаждения зоны (два канала по две гидроёмкости САОЗ в каждом) предназначена для подачи в реактор раствора борной кислоты при давлении в первом контуре менее 3,0 МПа в количестве, достаточном для охлаждения активной зоны реактора до подключения насосов аварийной подпитки первого контура низкого и высокого давления в проектных авариях с потерей теплоносителя первого контура. Трубопроводы от гидроёмкостей врезаются в неотключаемые участки ГЦТ двух холодных и горячих ниток ГЦТ (рис. 3).

Принципиальная схема подключения ГЕ САОЗ, насосов САОЗ низкого и высокого давления

Рис. 3. Принципиальная схема подключения ГЕ САОЗ, насосов САОЗ низкого и высокого давления

Система аварийной подпитки первого контура низкого давления предназначена для подачи раствора борной кислоты в первый контур во время аварии с потерей теплоносителя первого контура, включая разрыв ГЦТ Ду 500, когда давление в первом контуре снижается ниже рабочих параметров этой системы. Установлено, что наличие третьего канала активной системы аварийной подпитки первого контура с насосом низкого давления является необходимым с точки зрения возможности охлаждения активной зоны при аварии с гильотинным разрывом ГЦТ. Напорные трубопроводы каналов системы врезаются во вновь монтируемые трубопроводы от гидроёмкостей и в неотключаемые участки ГЦТ одной петли.

Система аварийной подпитки первого контура высокого давления предназначена для подачи раствора борной кислоты в первый контур при авариях с потерей теплоносителя первого контура, превышающей компенсационную способность системы нормальной подпитки, при давлении в первом контуре ниже рабочего давления этой системы (ниже 13,4 МПа). Система основывается на действующей в настоящее время системе аварийной подпитки первого контура блока № 4 и также используется эта система с блока № 3.

На рисунке 4 представлена принципиальная схема спринклерной системы и СВК после модернизации 3 и 4 блоков в 2001-2002 г.г.

Спринклерная система подает воду из бака аварийного запаса борной кислоты Б-8 на форсунки в бокс парогенераторов и по линии рециркуляции в Б-8 через теплообменники ТОС, на которые подается техническая вода при достижении температуры в Б-8 65 ºС. Бак Б-8 является фактически приямком ГО РУ, в который теплоноситель попадает через развитую фильтрующую систему, обеспечивающую проходимость связи при срыве теплоизоляции с поверхности оборудования, расположенного в герметичных помещениях.

Спринклерная система со струйно-вихревым конденсатором

Рис. 4. Спринклерная система со струйно-вихревым конденсатором.

Для расширения спектра проектных аварий вплоть до разрыва ГЦТ Ду 500 кроме модернизации САОЗ, описанной выше, необходимо обеспечить целостность существующего четвертого физического барьера (ГО РУ) и отвод тепла конечному поглотителю.

Концепцией повторного продления срока эксплуатации блока 4 НВАЭС решение данных задач предлагается осуществить путем объединения ГО РУ 4 и 3 блоков (рис. 5,6). При этом ограничение давления в герметичных помещениях РУ в начальной стадии аварии с разрывом ГЦТ обеспечивается за счет увеличения объема ГО и работой двух СВК. На последующих стадиях конденсация пара в герметичных помещениях и отвод тепла обеспечивается каналами спринклерных систем 4 и 3 блоков.

Анализ процессов в герметичных помещениях при проектной аварии с течью Ду500 из первого контура для блока 4 НВАЭС, модернизированного в соответствии с Концепцией повторного продления срока эксплуатации блока 4 НВАЭС выполнен НИЦ «Курчатовский институт». При этом исходные данные по выходу массы и энергии в герметичные помещения были рассчитаны и предоставлены ОАО ОКБ «Гидропресс». При этом для обеспечения максимального выхода массы учитывалось срабатывание всех ГЕ и всех насосов САОЗ.

 

МестоСЛА

Рис. 5. Место возможного объединения ГО – помещения барботажных баков

Принципиальный чертеж способа объединения ГО 3 и 4 блоков

Рис. 6. Принципиальный чертеж способа объединения ГО 3 и 4 блоков

Разрыв главного циркуляционного трубопровода приводит к выбросу из первого контура пароводяной смеси, что влечет за собой резкое повышение давления в герметичных помещениях. Сначала повышается давление в конфайнменте 4-го блока. Давление в конфайнменте 3-го блока возрастает с небольшим запозданием за счет перетока туда паро-воздушной смеси из конфайнмента 4-го блока.

Максимальное значение абсолютного давления в герметичных помещениях модернизированного энергоблока 4 составляет 0,176 МПа в конфайнменте 4-го блока и 0,129 МПа в конфайнменте 3-го блока (рис. 7,8), что ниже проектного предела – 0,2 МПа. Затем давление в обоих конфайнментах снижается за счет работы струйно-вихревых конденсаторов.

Включение в работу насосов спринклерных систем на орошение боксов ПГ в конфайнментах 4-го и 3-го блоков приводит к тому, что давление в герметичных помещениях становится ниже атмосферного. При этом воздух начинает поступать в герметичные помещения извне через неплотности герметичных помещений и струйно-вихревые конденсаторы.

Максимальное значение температуры в баках Б-8 не превышает 75 оС (максимально допустимая температура на всасе насосов АПН – насосы САОЗ высокого давления).

Рисунок 7 – Максимальное давление в герметичных объемах. Начальный этап аварии

Рисунок 8 – Максимальное давление в герметичных объемах

Рисунок 9 – Температура раствора в баках аварийного запаса борной кислоты

На главную