Решение задач по математике Вычислить интеграл Школьный курс математики Алгебра матриц Вычислить пределы Вычисление определенного интеграла  Вычислить криволинейный интеграл Двойной интеграл Тройной интеграл

Контрольная по математике. Вычислить пределы

Алгебра матриц

В этой главе, прежде всего, строится матричное исчисление. На множестве матриц, определяемых как таблицы вещественных чисел, вводятся операции (сложения, умножения, умножения на число, транспонирования и обращения) и изучаются свойства этих операций. Выясняется, что наряду со свойствами операций, наследуемыми матрицами у вещественных чисел, у них появляются и новые свойства, которыми вещественные числа не обладают. Например, умножение матриц оказывается некоммутативным.

После этого обсуждается проблема разложения матрицы на простейшие. Оказывается, что любую матрицу единственным образом можно представить в виде суммы матриц, каждая из которых обладает только одним ненулевым элементом. Представление матрицы в виде произведения простейших является более сложным и нуждается в построении специального аппарата элементарных матриц, оправдывающего себя в последующих разделах курса.

В последней части первой главы изучаются простейшие матричные уравнения. Двойные интегралы вычисляются, как правило, с помощью повторных интегралов. Однако переход от двойных к повторным интегралам возможен не для произвольной области интегрирования R, а для областей определенного типа. Введем понятия областей интегрирования типа I и II. Решение задач на вычисление интеграла Математика лекции, задачи. Примеры выполнения курсового и типового задания

Лекция I.

План

Матрицы. Терминология

Принцип равенства

Транспонирование матриц

Сложение матриц

Умножение матрицы на число

Принцип равенства Две действительные матрицы  и  называются равными (записывается ), если они имеют одинаковые размеры, т.е. числа строк и столбцов у этих матриц совпадают, и на одинаковых местах в этих матрицах стоят одинаковые элементы.

Сложение матриц Операция сложения определена лишь для матриц одинакового размера

Умножение матрицы на число

Скалярное умножение арифметических векторов

Умножение матриц

Умножение матриц, вообще говоря, некоммутативно, т.е. .

Реакция произведения матриц на операцию транспонирования

Основные типы алгебраических структур

Теория делимости квадратных матриц

 Пусть  и  два произвольных непустых множества. Декартовым произведением  этих множеств называется множество всевозможных упорядоченных пар вида , где . При этом две пары  и , где , считаются равными, если . Если , тогда множество  называется декартовым квадратом множества .

 Пример. Множество  является мультипликативной группой , т.е. операция умножения матриц определяет на этом множестве структуру группы.два внутренних закона композиции, которые записываются как сложение и умножение и обладают свойствами:

Элементарные преобразования над матрицами и элементарные матрицы

Свойства элементарных преобразований

Эквивалентные матрицы

Предложение 1.3 Для любой матрицы  существует л‑эквивалентная ей матрица приведённого вида

Пример 7. Построить матрицу  приведённого вида, л‑эквивалентную матрице Среди всех матриц размера  выделим множество диагональных матриц , где ,

Отношение эквивалентности

Разложение матрицы в произведение простейших

1-й критерий обратимости матрицы

Матричные уравнения

Написать матрицу, транспонированную данным:

Найти матрицу , если .

  Анализ трёх рассмотренных способов вычисления матрицы   позволяет дать рекомендацию: при вычислении матричных произведений с числом сомножителей больше 2-х целесообразно начинать вычисление произведений с наименьшим числом столбцов у правого сомножителя, и заканчивать вычислением произведений с наибольшим числом столбцов у правого сомножителя. ►

Часто сложное матричное выражение можно до его вычисления привести к более простому виду, используя свойства операций над матрицами.

  Пример. Найти матрицу

При вычислении степеней матриц и матричных выражений следует попытаться среди малых степеней  найти максимально простую матрицу с тем, чтобы использовать её для упрощения вычисления матрицы .

Пример 15. Разложить матрицу  в произведение простейших. Выяснить, является ли матрица  обратимой, и в случае её обратимости найти матрицу , если

Замечание. В следующей главе, основываясь на данном методе обращения матриц, мы построим более эффективную вычислительную схему для нахождения обратной матрицы, связанную с методом Гаусса решения систем линейных алгебраических уравнений.

Матрицы. Терминология

Прямоугольная таблица действительных чисел

  (1.1)

называется действительной матрицей. Числа , образующие матрицу, называются её элементами. Здесь . Для обозначения матриц будем применять заглавные буквы латинского алфавита A, B, C, ..., X, Y, Z, а для обозначения их элементов – греческие буквы  и т.д. с индексами  и . При этом первый слева индекс (индекс ) указывает номер строки, а второй индекс (индекс ) – на номер столбца матрицы, на пересечении которых расположен элемент . Наряду с обозначением (1.1) в литературе часто встречаются сокращенные обозначения

или просто . Эти обозначения мы также будем использовать в дальнейшем.

Введем специальные обозначения для строк и столбцов матрицы :

а множество всех действительных матриц с строками и столбцами будем обозначать через . Если , матрица называется прямоугольной матрицей порядка , а если  - квадратной матрицей порядка . Множество всех действительных квадратных матриц порядка обозначается . Матрица , имеющая только одну строку,

,

называется матрицей-строкой порядка .

Матрица , имеющая только один столбец,

,

называется матрицей-столбцом порядка . Матрицы-строки и матрицы-столбцы называются также арифметическими векторами. Множество всех арифметических векторов (матриц-столбцов) порядка  в дальнейшем будем обозначать через .

Элементы  матрицы  образуют её главную диагональ. Если все элементы матрицы , не стоящие на её главной диагонали, равны нулю,

,

матрица  называется диагональной. Квадратная матрица , у которой все элементы, стоящие выше (ниже) главной диагонали, равны нулю,

называется нижне-треугольной (верхне-треугольной) матрицей.

Понятие матрицы является одним из основных понятий курса алгебры. Элементами числовых матриц (целочисленных, рациональных, действительных, комплексных, булевых) являются числа (целые, рациональные, действительные, комплексные, булевы числа 0 и 1). В этом курсе мы будем иметь дело прежде всего с действительными матрицами. Тем не менее, обозначения  и т.д. имеют очевидный смысл. Наряду с числовыми матрицами в этом и других математических курсах встречаются более сложные типы матриц: полиномиальные, функциональные, блочные и т.д., то есть матрицы, элементами которых являются соответственно полиномы (многочлены), функции, блоки (матрицы одинакового порядка) и т.д. В связи с этим отметим, что все положения и свойства матриц, рассматриваемые в данном разделе, с надлежащими уточнениями справедливы и для других указанных выше типов матриц, характер же этих уточнений мы будем обсуждать всякий раз в соответствующем месте.

 2) Элементарные преобразования обратимы, а обратные им преобразования являются элементарными преобразованиями того же самого типа, т.е. если матрица  получена из матрицы  с помощью элементарного преобразования, тогда матрица  может быть получена из матрицы  с помощью элементарного преобразования того же самого типа.


[an error occurred while processing this directive]