Решение задач по математике Вычислить интеграл Школьный курс математики Алгебра матриц Вычислить пределы Вычисление определенного интеграла  Вычислить криволинейный интеграл Двойной интеграл Тройной интеграл

Контрольная по математике. Решить задачу

Объём цилиндрического тела.

Двойной интеграл.

Пусть в некоторой замкнутой области D плоскости хОу определена ограниченная функция z = f(x,у), причём f(x,y)>0. К определению двойного интеграла приходим, вычисляя объём фигуры, основание которой - область D; сверху фигура ограничена поверхностью, уравнение которой z=f(x,y) боковая поверхность - цилиндрическая, образованная прохождением прямой, параллельной оси Oz вдоль границы L области D. Такая фигура называется цилиндрическим телом (рисунок 1).

Рисунок 1. Цилиндрическое тело

Объём цилиндрического тела можно вычислить приближённо, заменив его ступенчатой фигурой следующим образом. Интегралы и их приложения Пример Математика вычисление интеграла

1. Область D произвольным образом разбивается на конечное число п элементарных областей (ячеек) D1, D2,..., Dn, площади которых обозначим соответственно ΔS, ΔS2 ,..., ΔSn. Диаметром ячейки называют наибольшее расстояние между двумя точками на её границе и обозначают diamDi.

Выберем в каждой ячейке Di произвольную точку и вычислим в ней значение. Составим сумму вида:

Каждое  слагаемое в сумме вычисляет объём прямого цилиндра с основанием Di и высотой .

Линейные свойства двойного интеграла

Вычисление двойного интеграла в декартовых координатах

Изменим порядок интегрирования

Двойной интеграл в полярных координатах

Приложения тройного интеграла С помощью тройного интеграла наряду с другими величинами можно вычислить: объём области V, массу m тела V переменной плотностью

Вычисление тройного интеграла в декартовых и других координатах Вычисление тройного интеграла сводится к последовательному вычислению трёх однократных интегралов. 

Сумма (1) называется интегральной уммой для функции f(x,y) по области D. Предел интегральной суммы (1) при max diamDi→0 (n→∞) называется двойным интегралом от функции f(x,y) по области D:

В обозначении двойного интеграла D-область интегрирования f(x,y) - подынтегральная функция, dS-дифференциал площади, который можно заменить произведением дифференциалов независимых переменных dxdy.

Формула (2) позволяет вычислить объём цилиндри-ческого тела при f(x,y)>0, в чём и заключается геометрический смысл двойного интеграла.

В общем случае, если функция f(x, у) непрерывна в замкнутой области D, то двойной интеграл существует (существует предел интегральной суммы (2)) и не зависит от способа разбиения области D на частичные и от выбора точек   в них.

1. Линейные свойства двойного интеграла:

2. Если область D разделена на несколько частей D1, D2,...,Dk без общих внутренних точек, то

3. Если функция f(x, у) непрерывна в замкнутой области D, то в этой области найдётся такая точка (хо,уо), что

где SD - площадь области D (теорема о среднем).

4. Если m, М - наименьшее  и наибольшее значения непрерывной функции f(x,y) в области D, то справед-ливо двойное неравенство (оценка двойного интеграла):

где SD - площадь области D (теорема о среднем).

Вычисление двойного интеграла в декартовых координатах

Область D называется правильной относительно оси Ох, если прямая, параллельная этой оси, проходящая через внутреннюю точку области D, пересекает границу области в двух точках. Аналогично определяется правильная область относительно оси Оу.

  Рисунок 2. Рисунок 3.

Рисунок 2 - Область, правильная, относительно оси Оу Рисунок 3 - Область, правильная, относительно оси Ох

Область D, правильную относительно как Ох, так и Оу, называют просто правильной областью.

Если область D - правильная относительно Оу (рисунок 2), двойной интеграл вычисляется по формуле:

Изменим порядок интегрирования. При этом нижняя граница области D задана двумя аналитическими выражениями . В этом случае область D нужно разбить на две области Dl, D2 с помощью прямой, проходящей по оси Оу. На основании свойства 2 двойного интеграла получаем:


На главный раздел сайта: Контрольная по математике