Решение задач по математике Вычислить интеграл Школьный курс математики Алгебра матриц Вычислить пределы Вычисление определенного интеграла  Вычислить криволинейный интеграл Двойной интеграл Тройной интеграл

Школьный курс математики

Понятие натуральных чисел

Понятия «число» и «операция» не так просты, как это может показаться с первого взгляда. Почему, пользуясь одними и теми же числами, мы можем считать камушки и звезды? Это позволяет нам думать, что, сколько бы ни было объектов, мы всегда сможем их пересчитать, и операции сложения, умножения будут также применимы к ним. Подобные вопросы ставились и древними греками, и в наше время.

В этом курсе мы будем исходить из того, что умение считать и различать разные количества предметов – врожденные способности человека. Возьмем в руки камушки, как это делали пифагорейцы, будем прибавлять их по одному, называть последовательно каждое количество своим именем и таким «наглядным» способом определим сразу два основных для алгебры понятия – число и операцию увеличения на единицу. Повторяя эту процедуру и предполагая, что ничто не мешает нам делать это бесконечно, мы сможем определить сложение и умножение на бесконечном множестве натуральных чисел.

Приведем без доказательства законы, которые впоследствии позволят определить операции сложения и умножения не только для чисел, но и для гораздо более сложных объектов, таких, как множества, функции, группы и так далее. Приоритет арифметических операций в числовом выражении следующий: вначале выполняются действия в скобках; внутри скобок вначале выполняют умножение и деление, после чего сложение и вычитание.

Делители и кратные Более удобный способ отбора составных чисел – решето Эратосфена – предложил в III в. до н. э. древнегреческий математик Эратосфен. Определить, является ли большое число простым, очень непросто. В настоящее время эта проблема решается при помощи ЭВМ, однако даже на самых быстрых из современных ЭВМ доказательство того, что число, состоящее из нескольких сотен цифр, является простым, может занять месяцы и годы. На сложности определения простоты чисел основаны современные механизмы шифрования данных. Общим делителем нескольких чисел называется число, являющееся делителем каждого их этих чисел. Среди всех делителей всегда есть наибольший. Такой делитель называется наибольшим общим делителем (обозначается НОД). Курс лекций - первый семестр Введение в математический анализ

Натуральными называются числа, которые используются для счёта предметов или обозначения номера предмета в ряду однородных предметов: 1, 2, 3, 4, 5, …

При сложении и умножении натуральных чисел снова получается натуральное число.

Пусть p и q – натуральные числа. Тогда:


На главную